Journal of Mathematics Education at Teachers College

Spring – Summer 2011

A Century of Leadership in Mathematics and its Teaching
TABLE OF CONTENTS

Foreword

iv Honoring the Past—Anticipating the Future
 J. Philip Smith, Bruce R. Vogeli, Erica Walker

Preface

v Mathematics Curricula: Standards and Implementation
 Nicholas H. Wasserman

Editorial Point-Counterpoint

6 Will Common Core State Standards facilitate consistency
 and choice or lead to unexpected outcomes?
 Nicholas H. Wasserman and Jacob Koelher

Articles

8 Slouching Toward a National Curriculum
 Jeremy Kilpatrick, University of Georgia

18 The Common Core State Standards: Comparisons
 of Access and Quality
 Nicholas H. Wasserman, Marymount School of New York

28 Modeling in the Common Core State Standards
 Kai Chung Tam, Macau, PRC

34 Reformed Curriculum Framework: Insights from
 Teachers’ Perspectives
 Shikha Takker, Homi Bhabha Centre for Science Education,
 TIFR

40 From Curriculum Guides to Classroom Enactment:
 Examining Early Career Elementary Teachers’ Orientations
 Toward Standards-Based Mathematics Curriculum
 Implementation
 Joan Gujarati, Manhattanville College

47 Design Research in the Netherlands: Introducing
 Logarithms Using Realistic Mathematics Education
 David C. Webb, University of Colorado at Boulder
 Henk van der Kooij, Freudenthal Institute for Science and
 Mathematics Education University of Utrecht, The Netherlands
 Monica R. Geist, Front Range Community College Westminster,
 Colorado

53 Using Simplified Sudoku to Promote and Improve
 Pattern Discovery Skills Among School Children
 Khairul A. Tengah, Universiti Brunei Darussalam
TABLE OF CONTENTS

63 NOTES FROM THE CURRICULUM LABORATORY

Bruce R. Vogeli

What is Mathematical Modeling?
Henry O. Pollak

Modeling Lessons and the Common Core State Standards
Benjamin Dickman, Brookline, Massachusetts

Meteorology: Describing and Predicting the Weather—An Activity in Mathematical Modeling
Heather Gould, Stone Ridge, New York

Packing Oranges
Kai Chung Tam, Macau, PRC

Arithmetic and Algebra to Solve Fairness Problems
Joseph Malkevitch, York College

Finding Average Rainfall
Stuart Weinberg, Teachers College Columbia University

The Buckyball Has Relatives: A Classroom Approach to Polyhedra
Anahu Guzman, LIM College

Other

72 ABOUT THE AUTHORS
This issue honors Clifford B. Upton, who was a senior member of the Teachers College faculty from 1907 until his retirement in 1942. Professor Upton was among the Nation’s most prolific mathematics authors. He served on the Board of Directors of the American Book Company enabling him to endow the Clifford Brewster Chair of Mathematics Education. The first professor to hold the Upton Chair was Dr. Myron Rosskopf.

Bruce R. Vogeli has completed 47 years as a member of the faculty of the Program in Mathematics, forty-five as a Full Professor. He assumed the Clifford Brewster Chair in 1975 upon the death of Myron Rosskopf. Like Professor Upton, Dr. Vogeli is a prolific author who has written, co-authored or edited more than two hundred texts and reference books, many of which have been translated into other languages.

This issue’s cover and those of future issues will honor past and current contributors to the Teachers College Program in Mathematics. Photographs are drawn from the Teachers College archives and personal collections.
Call for Papers
The “theme” of the fall issue of the *Journal of Mathematics Education at Teachers College* will be *Technology*. This “call for papers” is an invitation to mathematics education professionals, especially Teachers College students, alumni and friends, to submit articles of approximately 2500-3000 words describing research, experiments, projects, innovations, or practices related to technology in mathematics education. Articles should be submitted to Ms. Krystle Hecker at JMETC@tc.columbia.edu by September 1, 2011. The fall issue’s guest editor, Ms. Diane Murray, will send contributed articles to editorial panels for “blind review.” Reviews will be completed by October 1, 2011, and final drafts of selected papers are to be submitted by November 1, 2011. Publication is expected in late November, 2011.

Call for Volunteers
This *Call for Volunteers* is an invitation to mathematics educators with experience in reading/writing professional papers to join the editorial/review panels for the fall 2011 and subsequent issues of *JMETC*. Reviewers are expected to complete assigned reviews no later than 3 weeks from receipt of the manuscripts in order to expedite the publication process. Reviewers are responsible for editorial suggestions, fact and citations review, and identification of similar works that may be helpful to contributors whose submissions seem appropriate for publication. Neither authors’ nor reviewers’ names and affiliations will be shared; however, editors'/reviewers’ comments may be sent to contributors of manuscripts to guide further submissions without identifying the editor/reviewer.

If you wish to be considered for review assignments, please request a *Reviewer Information Form*. Return the completed form to Ms. Krystle Hecker at hecker@tc.edu or Teachers College Columbia University, 525 W 120th St., Box 210, New York, NY 10027.

Looking Ahead
Anticipated themes for future issues are:
- Fall 2011 Technology
- Spring 2012 Evaluation
- Fall 2012 Equity
- Spring 2013 Leadership
- Fall 2013 Modeling
- Spring 2014 Teaching Aids

TO OBTAIN COPIES OF *JMETC*
To obtain additional copies of *JMETC*, please visit the *Journal’s* website www.tc.edu/jmetc. The cost per copy delivered nationally by first class mail is $5.00. Payment should be sent by check to *JMETC*, Teachers College Columbia University, 525 W 120th St., Box 210, New York, NY 10027.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear the full citation on the first page. Copyrights for components of this work owned by other than The Program in Mathematics and Education must be honored. Abstracting with credit is permitted. To copy, to republish, to post on servers for commercial use, or to redistribute to lists requires prior specific permission. Request permission from JMETC@tc.columbia.edu.
NOTES FROM THE CURRICULUM LABORATORY

The Curriculum Laboratory associated with the Teachers College course MSTM 6022: Mathematics Curriculum Development joined with the Consortium on Mathematics and its Applications (COMAP) to address the Mathematical Modeling “cognitive category” of the Common Core State Standards (CCSS). While many of the CCSS recommendations addressed familiar cognitive categories such as Number and Quantity, Algebra, and Geometry, the category of Mathematical Modeling is unfamiliar to many educators. Indeed, mathematicians differ in the interpretations of mathematical modeling and mathematics educators are unsure of how to teach the modeling process, often confusing it with problem solving.

Participants in the 2010-2011 Curriculum Laboratory interpret mathematical modeling as a “disposition to mathematize,” that is, the recognition of opportunities to portray real world events and situations in mathematical form. To actualize this interpretation for schools and teachers, Laboratory participants prepared the thirty mathematical modeling lessons that comprise the Teachers College Mathematical Modeling Handbook published by COMAP.

The Laboratory’s Board of Editors, Heather Gould, Diane Murray, and Andrew Sanfratello, guided the preparation of these notes from the Curriculum Laboratory. While the actual lessons that appear in the COMAP publication are complete with teacher’s notes, black-line masters, answers and extensions, the JMETC Notes are abbreviated descriptions that focus upon the goal of creating a “disposition” toward mathematization. These notes illustrate how a mathematical disposition can be achieved utilizing everyday real-world artifacts such as weather maps, parking, rainfall estimates, fairness, and packing oranges.

Notes from the Curriculum Laboratory begins with a brief view of the Laboratory’s interpretation of mathematical modeling contributed by Dr. Henry O. Pollack, followed by descriptions of some of the Laboratory’s modeling lessons. For complete details and teaching materials for all thirty (30) Handbook lessons, please consult the COMAP publication or visit the online version at www.comap.com/NCTM.html.

Bruce R. Vogeli
on a proportional basis. In this example the total claims are $210. So we can compensate A with \((150/210)(140)\) and B with \((60/210)(140)\). This means $100 for A and $40 for B.

Maimonides’s method of gain described above gives B all of his claim back but this would not be true for A, who is out $70. So a different principle of fairness, also going back in part to Maimonides, says that the settlement should attempt to equalize the losses to the claimants. Here is how to solve this type of problem using the algebra involved in solving two equations in two unknowns.

Suppose we give amounts \(a\) to A and \(b\) to B so as to equalize the losses that A and B suffer. Since we have $140 to distribute, we have the equation \(a + b = 140\). Since A’s loss will be 150 - \(a\) and B’s loss will 60 - \(b\), we equate these two algebraic expressions: 150 - \(a\) = 60 - \(b\). This simplifies to \(-a + b = -90\). Now we need to solve the system \(a + b = 140\) and \(-a + b = -90\). The solution of the system is: \(a = 115\) and \(b = 25\). A loses $35 and B loses $35, equal amounts! It is not always possible to find values of \(a\) and \(b\) that equalize loss in similar situations. It is interesting to think through what the algebra “tells us” when this is the case. Note that there is much mathematical food for thought here because different fairness principles yield different answers, and all of these ideas need to be extended to situations with more claimants.

Assume the readings are as follows:

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Rainfall (depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.6 mm</td>
</tr>
<tr>
<td>B</td>
<td>13.4 mm</td>
</tr>
<tr>
<td>C</td>
<td>10.8 mm</td>
</tr>
</tbody>
</table>

Answer the following questions:

- What is the average depth of rainfall for the territory?
- Using the estimate of average depth, what is the total volume of rainfall?
- Do we need additional information to answer either or both of the two questions?

Development

Generally, students can be expected to find the mean of 12.6, 13.4, 10.8. Therefore, the goal of the lesson is to elicit the idea that a weighted average based on the locations of the gauges is necessary.

Ask students: Suppose the readings (depths) for A, B, and C are 2, 2, and 5mm, respectively and a diagram or map is displayed showing A and B in close proximity to each other:

```
A · · C
B ·
```

Again, students can be expected to find the mean and suggest that the average depth is 3.

Next, ask students to consider the following layout for rainfall gauges:

```
A · · C
· B
```

Now suppose that the readings for A and C are 2 and 5mm, respectively. What can we expect the reading for gauge B to be? Because rainfall is known to be a local phenomenon, students are likely to respond with “5.” But this would give us an average rainfall of 4 mm, which is different from the earlier mean of 3.

So, we elicit from the class that the placement of the gauges matters.

Working in small groups, students will be provided with a handout (Figure 1) showing the locations of the three rainfall gauges. Groups will be asked to use the data and find a “sensible” way to approximate average rainfall—one that considers gauge locations.

Following presentations of methodology by groups and perhaps building on one or more of the methodologies, the teacher will initiate a discussion that leads to the following solution:

We divide the territory into regions. The number of regions will equal the number of gauges and defined so that each point in the region is closer...
to its gauge than any other gauge. (Having students “construct” this definition of region by calling on relevant geometry is a key feature of the lesson.) We weight the rainfall measured at each region’s gauge according to the portion of the territory’s area in that region. The estimate of rainfall for the territory is the weighted average of the rainfall readings.

In finding the rainfall estimate, we have created a Voronoi diagram in which the boundaries of regions are determined from their centers of influence; in this problem, centers are the rainfall gauges. Every Voronoi boundary is a portion of the perpendicular bisector of a segment joining two centers.

This lesson can lead to a consideration of various methods for computing area of polygonal and other figures. (One possible method is to superimpose on the “map” of the territory a transparency with a coordinate grid.)

Question to pose to the class after finding the weighted average: How does the Voronoi diagram change if we add a fourth gauge D? Let us examine a couple of different locations, including 1) D in the interior of triangle ABC and 2) D in the exterior of triangle ABC.

Another kind of problem arises when we are given a Voronoi diagram and wish to determine the centers of the Voronoi regions, something to be considered in subsequent lessons.

Figure 1. Territory map with rain gauges

The Buckyball Has Relatives:
A Classroom Approach to Polyhedra

Anahu Guzman
LIM College

The construction of fullerene models using the following group activity is an opportunity to foster creativity and collaboration and to introduce some basic graph theory definitions in an enjoyable way. Fullerenes are a family of carbon-cage molecules in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs. From a mathematical point of view, a fullerene can be thought of as a convex 3-dimensional polyhedron with 3 edges at each vertex, and faces consisting of 12 pentagons and k hexagons (k ≠1).

Number of Group Members: 3

Required materials:
1 pack of 2.5 inch assorted color rubber bands
1 12 inch or larger balloon
1 small pack of dental floss

Begin the discussion by examining a soccer ball; notice the pentagonal and hexagonal faces. Two faces share each edge and every 3 faces share a common point (vertex). A soccer ball resembles the “Buckyball,” one of the most famous fullerenes (C60). Since fullerene graphs are 3-valent (3 edges at every vertex), any circuit (begins and ends at the same vertex, alternating between different vertices and edges) will use two of the edges at every vertex of the circuit, which allows use of the missing edge to code the circuit using binary numbers. Code circuits using 0 for edges that point in and 1 for edges that point out of the circuit. A shell diagram associated with the code (0011)³(01) = 00110011001101 is shown in Figures 1 and 2. The outer part of the circuit can be thought of as the “icing” with faces and the inner as the “filling” with faces (Figure 3).

References

Teachers College invites applicants for a faculty position in mathematics education. A successful candidate will have an earned doctorate in mathematics or mathematics education at the time of appointment and a demonstrated ability to pursue an active research agenda in a significant area of mathematics education. Applicants should be qualified to teach graduate-level courses in at least two areas of mathematics and in two or more areas of mathematics education. Preference will be given to candidates with prior experience teaching school mathematics. All candidates are expected to demonstrate an ability to establish a research program and a potential to obtain external funding. Candidates also are expected to establish a record of continuous, scholarly productivity and a record of leadership. Minority candidates are strongly encouraged to apply.

Rank: Open Rank, Tenure Track

Send CV, a cover letter explaining your interest in the position, representative publications, and names of three references to Professor Bruce Vogeli, Search Committee Chair, Teachers College Columbia University, 525 West 120th Street, Box 195, New York, NY 10027.

Review of applications will begin by November 15, 2011 and continue until the search is completed. Appointment begins September 2012.

Teachers College as an institution is committed to a policy of equal opportunity in employment. In offering education, psychology, and health studies, the College is committed to providing expanding employment opportunities to persons of color, women, and persons with disabilities in its own activities and in society.
Order from:
The Consortium on Mathematics and Its Application

BY MAIL:

COMAP, Inc.
175 Middlesex Turnpike, Suite 3B
Bedford, MA 01730
USA

BY EMAIL:

info@comap.com

Download a free Handbook Sampler of five lessons at www.comap.com/NCTM.html